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Abstract. We derive an exact energy type invariant for the double well anharmonic 
oscillators. This invariant holds for certain time dependent potential parameters. We use 
a nonlinear superposition principle to solve the nonlinear constraint equations, which 
appear in the resolution. 

1. Introduction 

Generally, differential equations with time dependent coefficients cannot be solved 
directly. It may be fertile to find invariants (conserved quantities) of the problem. 

Some years ago, Lewis (1968) found an invariant of the time dependent harmonic 
oscillator. This invariant is expressed in terms of a particular solution of some auxiliary 
equation, Lewis and Reisenfeld (1969) used this invariant to give an exact quantum 
mechanical treatment of the time dependent harmonic oscillator. Later Ray and Reid 
(1979) and Lutzky (1980) extended this result to the so-called Ermakov system 
(Ermakov 1880). Morever this invariant is used to work out a nonlinear superposition 
law (Ray 1980), i.e. a relation which combine solutions in a certain way to generate 
new solutions, for the Ermakov systems. 
On other hand, the Feix group has revived the interest of time dependent coordinate 

transformations for differential equations with time dependent coefficients. They have 
extended this kind of transformation, regarding it as an element of a quasi-invariance 
group, to treat non-Hamiltonian problems. They used such transformations to study 
asymptotic solutions in time-dependent problems such as plasma physics (Burgan et 
a1 1978) Newtonian equation of motion (Moraux et a1 1981) and quantum mechanics 
(Munier et a1 1981). 

In a recent paper Leach ( 198 1 )  builds an exact invariant for a class of time dependent 
anharmonic oscillators with cubic anharmonicity perturbation. He uses the methods 
of the Lie theory of extended groups which is very similar to the quasi-invariance 
group method. Moreover he obtains the constraints on the time dependent coefficient 
of the perturbation, in order that an exact invariant should exist. Indeed, in general, 
a time dependent equation does not possess an invariant. 

In this paper we study the time dependent quartic double well anharmonic oscil- 
lators. We give, for possible quantum applications, an invariant and constraints on 
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the time dependent potential parameters. In § 2 we recall some basic features about 
the method of Lie group. In 3 we give the expression of the energy-type invariant. 
In 0 4 we show that this method is in fact a special case of the quasi-invariance group. 
Finally in § 5, we use a nonlinear superposition law to solve formally the equations 
giving the potential parameters. 

2. Lie theory and second-order differential equations 

We consider the problem of a classical particle in a time dependent quartic potential 

V(q ,  t )  = ; p ( t ) q 2 + : ~ ( h 4 ,  (2.1) 

where p ( t )  and A ( t )  are two functions of time ( t ) .  If /.L ( t )  is negative and A ( t )  positive, 
V(q ,  t )  has two minima located at q = where V ( q ,  t )  has the value -k2/4A. 
If p (  t )  and A (  t )  have the same sign there is one extremum ( q  = 0, V = 0). Now, let 
us study, the equation of the motion of a particle, with a linear friction in the potential 
defined by (2.1) 

d2q/d t2+S( t )  dq /d t  +p( t )q  + A ( t ) q 3  = 0. (2.2) 

This equation can easily be converted into a form without linear friction. To prove 
this assertion we perform the following change to a new independent variable 0 defined 
as 

dB = dt/A2(t) ,  (2.3) 

where A( t )  is a function of t. The equation of motion (2.2) now reads 

+- ( S ( t )  - 2 3 + p (  t ) q  + h ( t ) q 3  = 0. 
1 d2q 1 

A4(t) d e 2  A2(t)  
-- (2.4) 

In order to cancel the linear friction a(?), A(t)  must verify the following equation 

A( t )  = Cint exp 4 J ti( t ')  dt', (2.5) 

where Cint is an integration constant. 
Thus, the case with linear friction can be assimilated to the case without friction. 

For this reason we shall consider the friction-free case for simplicity and with no loss 
of generality, although the Lie theory of extended group holds for an equation of 
motion with friction. In this section we use the Lie Theory of extended groups and 
derive the expression of the generator. Let 

E ( $ ,  4, 4, t )  = 0, (2.6) 

be a Newtonian equation of motion. Suppose equation (2.6) remains invariant under 
a transformation of generator U, we require 

U'2'E( q, 4, q, t )  = 0, 

u(2) = U + q ' l )  

(2.7) 

a/ag + q ( 2 )  ala$, (2.8) 

where U'2' is the second extension of U given by 
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Equation (2 .7)  gives, if E = 4 + g ( q ,  t )  = 0,  a polynomial equation in 4. By equating 
coefficients of powers of q, one obtains 

a2t /aq’  = 0, ( 2 . 9 ~ )  

a2q /aq2  - 2  a25/aq a t  = 0, (2 .96)  

2 a 2 q / a t  aq -a2[/at2 +3g ag/aq = 0, ( 2 . 9 ~ )  

6 agla t  + 7 a g / a q  +a2v /a t2 -  g a q / a q  +2g agla t  = 0. ( 2 . 9 d )  

Integrating ( 2 . 9 ~ )  and (2 .96)  gives: 

5(s, t )  = b ( t ) q  + a ( t ) ,  7 ( 9 ,  t)’ m I 2 + c ( t ) q  + d ( t ) .  (2 .10a)  

For the special case, when (2 .2)  holds, from ( 2 . 9 ~ )  and ( 2 . 9 d )  one gets 

b = 0 ,  2 c - a = 0 ,  ak + 2 a p  + c = 0,  

,ia +2Ac +2ah = 0 ,  d + p d  = O .  
(2 .10)  

For simplicity we restrict ourselves to the case d = O .  Then the solution of equations 
(2.10) is 

2c( t )  = l i (  1 )  +a ,  

A ( t )  5 t )  exp ( -a E), (2.1 1) 

where K and a are integration constants. Functions a ( t )  and p ( t )  are related by the 
third-order equation 

a +2a@ +4ap = 0. (2.12)  

Equations (2.1 1 )  and (2 .12)  clearly show that A (  t )  and +( t )  are not independent. Only 
one of them can be arbitrarily chosen, the other one is given by the solution of equations 
(2.1 I )-( 2.12). Then, the second extension of U is now given by 

3. Invariant of the problem 

In order to find an invariant to the problem defined by equation (2 .2) ,  one way is to 
apply Noether’s theorem which gives an invariant to any symmetry type in the 
Lagrangian. In our case, it is given by 

uq, 4, t )  = ;q2 + V q ,  l ) .  

U“’(9, 9, t)Uci, 4, t )  = 0, 

(3.1) 

(3.2) 

Noether’s theorem states that if 
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where U"' is the first extension of the vector field U, then the quantity 

@(4,q, t )  = (54  - 7 7 )  w a g  - 5L +f, (3.3) 

is conserved (Gelfand and Fomin 1963), wheref(q, t )  is a function determined together 
with 5 and 7. 

Another way to find an energy type invariant is to use the fact that the invariance 
of energy is associated to the time translational invariance (Leach 1981), then, the 
generator of such a transformation is 

U = alar. (3.4) 

T = f ( t ) ,  Q = g ( t ) q  + h ( O ,  ( 3 . 5 )  

Consequently, with a generalised canonical transformation 

which is linear in q and nonlinear in t ,  we can determine the functions f; g ,  and h 
under the condition 

C(Q,  T)=d/dT, (3.6) 

where fi is U expressed in terms of the new variables (Q, T). Inserting the transforma- 
tion (3 .5)  in the expression ( 2 . 8 A )  for U ( q ,  t )  and assuming the condition (3 .6 )  is 
verified, one finds 

ah = 0, af= 1 ,  ag +;(a + a ) g  = 0, (3.7) 
and by integration, we obtain 

To determine the integration constants C,, C2 and C3 it is required that the coordinates 
(4, t )  and (Q, T )  coincide at t = 0, if a(0)  = 1, then C, = 0 and C2 = C3 = 1. We can 
now write the equation (2 .1)  in terms of coordinate Q and time T, 

(3 .9)  d2Q/dT2 + a d Q / d T  + M Q  + NQ3 = 0, 

where 

M =;(a + a ) * - ~ ( - 2 a U + 4 a u  + 3 a 2 + a 2 ) + p a 2 ,  

N = A ( t ) a 3  exp(af). 
(3.10) 

The last equation, for N, is nothing but equation (2.11) where K appears as an 
integration constant. Evidently, N is a constant. Using the contraint equation (2.12) 
it is straightforward to check that M is also a constant. 

We can now notice that the time dependent coordinate transformation (3.5) with 
equations (3.8) give the following transformation law of phase space element 

d q d c = e x p (  -:l'-)dQdV, dt '  
a ( ? ' )  

(3.1 1 )  

where v = dq/d t  and V =  dQldT.  This equality (3 .1 1)  clearly shows that the Hamil- 
tonian formalism occurs only for a = 0. Under these circumstances equation (3 .9)  can 
be integrated and gives the energy type invariant: 

@(Q', Q)  = fQ"  +fMQ' +$NQ4, (3.12) 
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where the prime denotes differentation with respect to the new time T. This dual 
potential is now time independent. It has two minima if M is negative and N is 
positive. This last condition requires a ( t ) > O  in agreement with equations (3.8). 
Equations (3.10) are now differential equations 

$aU - i d 2  +pa2= M, A ( 1 )  = (3.13) 

where M and N are two constants. 

4. Quasi-invariance group 

In this section we apply the quasi-invariance group method to the time dependent 
double-well oscillator. We introduce a rescaling of space and time as follows 

dB = dt/AZ( t ) ,  4 ( t )  = x ( e ) c ( t ) ,  (4.1) 

where X and 8 are respectively the new coordinate and time. A and C are two 
functions of time t. 

Applying this transformation to equation (2.2) we obtain 

d X  A4 
d e  C 
-++-(C+SC+pC)+AX3A4C2=0. 

This equation is very similar to (3.9). However we note that the transformation 
renormalises the friction term by a time dependent coefficient. The friction term S( t )  
can be eliminated straightforwardly by a choice on A and C as done in 9 2. This leads 
to a differential equation for C I A  and the solution is 

(4.3) 

where the integration constant has been chosen to verify A(0) = C(0) .  Under the 
conditions 

C + S( t ) C  + p(  t )C = RC/A4,  A( t )A4C2=S (4.4) 

where k and R are constants, equation (4.2) now leads to the Hamiltonian of the 
particle in a potential 

V(X) =;RX2+:kX4. (4.5) 

I (X,  X’) =$(dX/dO)’ +$RX2+akX4. (4.6) 

This problem has an invariant which is obtained by integration with respect to X 

It can be emphasised that this invariant does not exist for an arbitrary triplet ( p ( t ) ,  
A(t), a(?)). Only two of these functions can be chosen arbitrarily, the third being 
submitted to the constraints (4.4). Also the change of function c( t )  = in system 
(4.4) with S = O  leads to 

aii - ta2+2pa2= 2R, (4.7) 

which is nothing but the equations relating the potential parameters obtained in 9 3 
with M = R. 

We now deal with the asymptotic solutions. When the friction is positive, (when 
S = 0, this occurs if C (  t )  increases more rapidly that A( t ) )  the asymptotic solution 
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is one the two minima of the potential (4.5) 

x,, = *(-n/k)”’ or in q-space qas = X,,C( t ) .  (4.8) 

To conclude this section we make a remark about the change of variables (4.1). This 
linear change of variable in X is the only one which gives an Hamiltonian formalism. 
Indeed, let us generalise the time dependent change of variables following 

q ( t )  = x(e)c( t )  + x * ( e ) B ( t ) .  (4.9) 

The phase-space is transformed as 

dq du = A-2( C +2XE)’ d X  d V, (4.10) 

which is invariant only if A = C and E = 0. 
However we cannot use this change of variable study the non-Hamiltonian problem 

( 2 . 2 ) .  The equation of motion in dual space contains a friction term of the form 
(B/C)(dX)2/(dO)2 which is always positive, under the reflection X - *  - X .  This is not 
possible for a friction term and we must require E = 0. Then equation (4.9) reducek 
to the linear change of variables. 

5. Solution of the potential parameters constraint 

In order to give the explicit form of the invariant we must solve the system (4.4) where 
p ( t )  and h ( t )  are given functions of time. If A ( t )  is known it is straightforward to 
obtain C ( t )  and p ( f ) .  On the contrary if p ( t )  is the given function, we must solve, 
in a first step the nonlinear equation (4.4). Acrording to the remark, of § 1, about 
the friction term, we solve (4.4) in the special case S = 0. To solve it we use a so-called 
nonlinear superposition law. Let us consider the following system 

C+p(f)C=n/c’,  

x + p (  t ) X  = 0, 

which is called an Ermakov system (Ermakov 1880). 
The first equation is equation (4.4) and second one an auxiliary equation. For such 

a system, the nonlinear superposition law has been given by Ray (1980). Let us recall 
the derivation of this principle. 

In a first step one constructs an invariant of (5.1) by eliminating, for example, the 
function p ( t )  and integration with respect to t .  One gets 

J = ; ( C X - X C ) * +  V(r), (5.2) 
where V( r )  = n / 2 r 2 ,  with r = C / X .  

invariant takes the form 
Then we define a third time by dT=dt /X2( t ) .  In terms of these variables, the 

J = f(dr/dT)’ +R/2r2.  (5.4) 
Integration leads to 

where T~ is an arbitrary constant. This equation leads to the nonlinear superposition 
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law. If we known any particular solution X ( t )  of equation (5.1) the general solution 
C ( t )  is 

C( t )  = X( l ) r  ( 5  dt /X2( t )  +Tor J), 

where T,, and J are two integration constants. 
In our case, we obtain r from equation ( 5 . 5 ) .  Then (5.6) is in fact 

where C (  t )  is the general solution of (5.1) and X (  t )  a particular solution. 

6. Concluding remarks 

We have considered the time dependent anharmonic double well oscillators. We have 
constructed an energy type invariant of this problem in the special case where the 
potential are solutions of a nonlinear differential system. We have given the formal 
solution of this equation, using a nonlinear superposition law. 

We have seen that the formalism of quasi-invariance group is more general and 
more tractable than the Lie theory of extended group. Moreover the formalism is well 
suited to the non-Hamiltonian case and to the asymptotic study, by the choice left on 
the friction term. 

Finally we have shown that the generalised canonical transformation is the most 
general that we can use for a physical problem. 
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